Title of the Course: Total Synthesis of Natural Products (2021-2022 Fall Semester)

Total Time: 3h Thursday 20-Jan-2022, 16:15–19:15, CE1103

Please show y	our ID or	Student (Card
---------------	-----------	-----------	------

	Please show your ID or Student Card
Materials allowed:	
- Writing materials (pen, pen	cil).
- Drink and food.	
	Name:
	Signature:

Question 1 (20 points)

In Scheme 1 are summarized the key transformations of Oppolzer's total synthesis of longifolene.

- a) Please propose the structures of the products A, B, C and D.
- b) Compound 1 is converted to the natural product in three steps. Please draw a possible reaction pathway and the structures of the intermediates that account for the conversion of 1 to longifolene.

Scheme 1

Question 2 (20 points)

- a) The enantioenriched dialdehyde 2, a key intermediate in Corey's total synthesis of aspidophytine, is synthesized from 2-bromo-3-methoxycyclopent-2-en-1-one (3). Please propose a forward enantioselective synthesis of 2 from 3 (Scheme 2a).
- b) Reaction of 6,7-dimethoxy-*N*-methyltryptamine (4) with dialdehyde 2 under conditions specified in Scheme 2b affords aspidophytine (5) in 66% yield. Please propose a possible reaction pathway for the formation of product 5 from 2 and 4.

Question 3 (15 points)

- a) Two key steps in Overman's total synthesis of actinophyllic acid are intramolecular oxidative coupling of dienolate of 6 (Scheme 3a) and a domino aza-Cope/Mannich sequence. Please explain (using conformational analysis) why one of the C_a-protons is deprotonated selectively instead of C_b-H, hence the regioselective cyclization of 6 to 7.
- b) Provide the structure of **9** formed via an aza-Cope/Mannich reaction of **8** with formaldehyde (Scheme 3b).

Scheme 3

Question 4 (15 points)

The tetrasubstituted pyrrole 10, a key intermediate on the way to rigidin A, is synthesized by a three-component reaction of α -cyanoacetamide (11), aldehyde 12 and ketone 13 (Scheme 4).

- a) Please provide a step-by-step disconnection of rigidin A (a retro-synthetic scheme) that eventually leads to the three building blocks 11, 12 and 13.
- b) Please provide a possible reaction mechanism accounting for the formation of 10 from 11, 12 and 13.

Scheme 4

Question 5 (10 bonus points)

- a) Provide a reasonable retro-synthetic analysis of (\pm) -esermethole (Figure 1).
- b) Propose possible conditions for the forward synthesis of racemic esermethole according to your synthetic plan.

Figure 1